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Impulsively started, viscous, incompressible flows around a circular cylinder are 
simulated by a Lagrangian vortex solution of the vorticity equation using random 
walks for diffusion and the vortex-in-cell method for convection in a fractional-step 
scheme. Vortices are introduced around the surface a t  each timestep to satisfy the 
zero-slip condition. In  the range of Reynolds numbers 2.5 x lo2 to lo5, comparisons 
with two analytical solutions, valid for small times (t  < l) ,  show reasonable 
agreement. For somewhat longer times (t  < 5 ) ,  for a similar range of Reynolds 
numbers, comparisons are made with accurate Eulerian numerical solutions and with 
careful flow-visualization experiments. Agreement is good provided a sufficiently 
large number of vortices is introduced per timestep. The number required increases 
as Reynolds number increases. If too few are introduced, the vorticity in the wake 
tends to roll up too tightly. The vortex method remains stable, whereas Eulerian 
schemes have been reported to become eventually unstable unless upwind 
differencing is used, reducing accuracy. 

1. Introduction 
The use of the fractional-step, Lagrangian vortex scheme originally proposed by 

Chorin (1973, 1978) to solve the vorticity equation in two dimensions is the subject 
of considerable research effort (e.g. Leonard 1980; Chorin 1980; Roberts 1985). The 
method has shown potential for the simulation of flows around cylindrical bodies 
(e.g. Cheer 1983; Stansby & Dixon 1983; Smith & Stansby 1987). The vorticity field 
is discretized into a set of particles (vortices). I n  the time-stepping procedure, 
vortices are created on the cylinder surface to satisfy the zero-slip condition, random 
walks are imposed to simulate the process of viscous diffusion and vortices are finally 
convected in an inviscid calculation. A large number of vortices is required in order 
to achieve a good flow representation and these are handled efficiently using the 
vortex-in-cell method of velocity calculation. We use a single, radially expanding 
polar mesh, coincident with the surface of the cylinder along its inner boundary, 
enabling the surface boundary conditions to  be satisfied simply and precisely. The 
operation count for each timestep is of order N logN,  where N is the number of grid 
points on the mesh, whereas direct summation for L vortices would produce an 
operation count of order L2. The use of the vortex-in-cell method is thus 
advantageous in terms of efficiency and precision of the boundary conditions at the 
cylinder surface. 

Impulsively started flow around a circular cylinder has been the subject of much 
study for fundamental and practical reasons. It is well known from experiment 
(Tritton 1977) that flows of long duration become three-dimensional when the 
Reynolds number is increased above about 100. The initial stages are, however, 
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thought to be almost two-dimensional and careful flow visualization experiments 
(Bouard & Coutanceau 1980) provide valuable data for comparison with numerical 
solutions. At early times the flow undergoes gross changes, with moving separation 
positions, the formation of recirculating regions and the formation of secondary 
eddies. These phenomena are dependent on Reynolds number, presenting a severe 
test for any prediction method. 

For very small times ( t  < 1,  non-dimensionalized using the cylinder radius and the 
onset flow velocity) we compare with two analytical solutions based on time-series 
expansions (Collins & Dennis 1973a; Bar-Lev & Yang 1975). For longer times 
( t  < 5 )  we compare with the Eulerian finite-difference solutions of Collins & Dennis 
(1973b) and Ta Phuoc LOC & Bouard (1985). The latter show that their computed 
results, including importantly some velocities in the near wake, are in close 
agreement with the experiments of Bouard & Coutanceau (1980), providing an ideal 
check for our vortex method. I n  this paper we present a comprehensive description 
of the flow, including the time variation of surface pressure and surface vorticity 
distributions, separation positions, forces, streamline patterns and some velocities in 
the near wake. 

The accurate Eulerian formulations mentioned above do not include upwind 
differencing, without which such schemes have been reported to become eventually 
unstable (e.g. Telionis 1981; Davis & Moore 1982). Collins & Dennis (19733) 
specifically mention the breakdown of their integration procedure at a time which 
decreases with increasing Reynolds number. The use of upwind differencing reduces 
accuracy. The vortex method, on the other hand, remains stable and it is desirable 
to  show that this alternative method, which is relatively easy to  set up, can predict 
accurately the detailed, highly transient flow structures which occur during the 
starting flow around a cylinder. 

2. Theory 
The viscous flow of an incompressible fluid with constant kinematic viscosity (v) 

and density ( p )  past a circular cylinder is governed by the Navier-Stokes and the 
continuity equations. I n  non-dimensional form, these may be written 

(1) 

w . u = o .  (2) 

au _ -  - -$WP-(u- W)u+2Re-'V2u, 
at 

The dependent variables are the velocity (u) and pressure (Y). The cylinder radius 
( a )  and the speed of the distant flow ( U )  are respectively the reference length and 
velocity. Re = 2Ua/v is the Reynolds number. The dimensional velocity (u*) ,  time 
( t * )  and pressure (P*) are given by 

u* = Uu, t* = at/U, P* = +pU2P. (3) 

I n  order to simulate a flow numerically by the vortex method, ( 1 )  and ( 2 )  are recast 
as a Poisson equation for the stream function, $, 

@ >  (4) 
and a transport equation for the component of vorticity normal to the two- 
dimensional plane of the flow, o, 

V $ = -  2 

(5 
aw 
at 
- = - (u - W) o + 2Re-'V2w, 
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w is related to u through the equation 

w = Iv A u].  (6) 

The motion is referred to a polar coordinate system ( r ,  8). The cylinder surface is at 
r = 1 and (1 ,O)  coincides with the upstream stagnation point of the potential flow. 
If t = 0 defines the start of the motion, the boundary conditions for the solution of 
(4) are that, for t > 0 

$ = 0 when r < 1, (7a )  

Y - t - s i n o  asr-too. ( 7 b )  ar 

Those for ( 5 )  are that, for t > 0 

u - 0 = 0 when r < 1, 

w + O  a s r - t a .  ( 8 b )  

The boundary conditions set the velocity within the cylinder surface to zero 
(equations ( 7 a )  and (8a) )  and state that  the vorticity and the perturbation it causes 
in the flow a t  large distance from the cylinder are small (equations (76) and (86)). 

u is related to  $ through the equation 

where f and 8 are unit vectors. 

3. Method 

such that 
The distribution of vorticity is approximated by a set of L discrete point vortices, 

L 

w = 2 &6[r-r,] ,  (10) 
i=l 

where and ri are respectively the circulation and position of the ith vortex and 6[r]  
is the Dirac delta function. The distribution is advanced through successive time 
steps (At) by the method summarized below. 

(i) Poisson’s equation for the stream function is solved on the vortex-in-cell mesh, 
and the solution is used to create a set of new point vortices on the cylinder surface, 
which satisfy the zero-slip condition. 

(ii) Viscous diffusion is simulated by adding a random walk to the positions of the 
discrete vortices. Vortices crossing the surface are reflected back into the flow. 

(iii) The velocity of each vortex is calculated by the vortex-in-cell method and 
their positions are advanced to  give a first-order prediction. 

(iv) New velocities are calculated, again using the vortex-in-cell method, to give 
a second-order correction to the vortex positions. 

The components of the method are now described in detail. 

3.1. The solution of Poisson’s equation 
A modified polar coordinate system (r’ ,  8) is introduced. Equation (4) may then be 
written 
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dr' d2r' 
dr dr2 

b ( / )  = r -+r2- ,  

r = B(eA"- 1)  + 1. (114 

Equation (1 1 )  may be solved using a fast Fourier transform technique, since only the 
Poisson operator includes the coordinate 8; the technique is advantageous because 
of its low operation count (Hockney 1970). A 129 x 200 polar mesh was used, with 
a uniform mesh size in the coordinate system (r',O), defined over an annular 
region outside the cylinder surface ( 1  < r < T o ) .  At the node (i,j), r' =j and 8 = iA8 
(A8 = 2n/128; i = 0 , .  . . ,128; j = 0 , .  . . ,199). Fine resolution is required near to the 
surface of the cylinder, whereas progressively coarser resolution is acceptable with 
increasing radial distance. The constants A and B in equation (1 1 d) are fixed by the 
radial mesh spacing a t  the cylinder surface (a spacing equal to the standard deviation 
of the random walk was found to be suitable in the following computations) and 
by the value of the outer radius ( rJ .  ro must be sufficiently large for ( 7 b )  to be an 
adequate approximation and for all the vortices to be contained within the mesh 
(equation ( 8 b ) ) .  Results are presented in $5, for times up to t = 0.8, which show 
insensitivity to the choice of ro in the range 5 to 100. 

The circulation carried by each vortex is distributed between the four corner nodes 
of the cell in which the vortex is contained. An area-weighting scheme is used 
(Christiansen 1973). If f ( i , j )  is the total circulation associated with the node (i,.j), the 

. . f(i,j) dr' 1 
w(z ,g )  = - - 

nodal value of w is given by 

r A 0  dr r d +  

Both -w2 and @ are expanded as Fourier series in B and substituted into the finite- 
difference analogue of (1 1 a), yielding a set of tridiagonal simultaneous equations for 
each harmonic amplitude of $, which are solved by Gauss elimination. 

3.2. Creation of vorticity 
New vortices are created along r = 1 at each time increment, modelling the creation 
of vorticity due to the action of viscosity a t  a solid boundary. The vortices are 
assigned circulations which modify the source term in (1 1 a ) ,  so that the boundary 
condition on the tangential component of velocity (equation @a)) is satisfied. Since 
$r $1 @ ( r )  along r = 1 (equation (7a)), the finite difference analogue of ( l l a )  reduces 
to 

w ( i , O )  = -a(O)[@(i, 1)-2$(i,O)+@(i, --l)]--!$(O)[$(i, l)--$(i, --l)]. (13) 

In order to satisfy the boundary conditions (equations (7a) and ( 8 a ) )  the stream 
function must be a constant at all points inside the cylinder. We therefore set 
@(i, - 1 )  = @(i, 0) = 0. Equation (13) then becomes 

(14) w(i ,  0) = - [a(O) + $b(O)] @(it 1). 

From (12), an additional circulation f ( i , O )  must be introduced a t  the surface node 
(i,  0), given by 

f ( i , O )  = ABw(i,O)? - f ' ( i , O ) ,  (15) dr dr I 
where P ( i ,  0) is the circulation distributed onto the mesh from the old vortices. The 



Impulsively started $ow around a circular cylinder by the vortex method 49 

additional circulation f ( i ,  0) is shared between the newly created vortices. The 
number of new vortices created a t  each surface node (7%”) was determined by 
numerical experiment (§ 5 ) .  

3.3.  Time marching 
Following the method of Chorin (1973, 1978), (5) is split into a linear diffusion 
equation 

and the nonlinear Euler equation 

The processes of viscous diffusion and of convection, denoted by the suffices 1 and 2 
respectively, are considered separately. At each timestep, (16) and (17) are solved 
consecutively, in order to approximate the solution of the complete vorticity 
equation. 

Equation (16) is solved by adding a random walk to the positions of the vortices, 
based on a normal distribution with zero mean and variance 2vAt (Wax 1954). 
If g and h are two numbers selected from the normal distribution and (xl, y l )  and 
( x 2 ,  y z )  are respectively the Cartesian coordinates of a vortex before and after 
displacement, then 

g and h are reselected for each vortex and at each timestep. Following the random 
walk, if a vortex lies inside the cylinder, it  is reflected to  its exterior mirror-image 
position (Chorin 1978). 

It may be shown that equation (17) is solved by convecting the vortices in the 
velocity field, while each vortex preserves its circulation (Batchelor 1981). The 
velocity of a vortex is obtained from the finite difference analogue of (9), using 
the nodal values of $ associated with the cell containing the vortex. The convec- 
tive displacements are calculated using a second-order Runge-Kutta method. If 
u = u ( r , t )  is the velocity of a vortex, and r1 and r2 are respectively its positions 
before and after displacement 

2 2  = x, +g, y ,  = y1 + h ,  (18) 

r2 = r , + f ( d l + d 2 ) ,  ( 1 9 a )  

where dl = u(rl ,  t )  At, (19b) 

d, = u ( r , + d , , t + A t ) A t .  ( 1 9 4  

Second-order accuracy is obtained at the expense of a second solution of the Poisson 
equation, which is required for the calculation of d,. 

Beale & Majda (1981) showed that the viscous-splitting algorithm used here 
(equations (16) and (17)) converges a t  a rate proportional to Re-’ At. The random- 
walk method gives an exact solution of (16); there is no error associated with the 
timestep length. At high Reynolds numbers, therefore, when Re-I At is small, the 
accuracy of the method is determined by the accuracy of the solution of (17) : second 
order in At. 

A timestep of 0.02 was found to be small enough for convergence in the following 
computations ($5) .  
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4. Surface pressure, forces and vorticity 
4.1. Surface pressure 

The velocity and its time derivative are equal to zero along r = 1. Equation (1)  
therefore simplifies to 

(20) $VP = 2Re-' V2u = 2Re-'[V(V - u )  - V A V A u] .  

Substituting (2) and (6) into (20) and forming a scalar product with the unit vector 6 

The right-hand side of (21) represents the flux of circulation per unit length across 
the cylinder surface, modelled over one time increment by the creation of circulation 
r(i, 0) (i = 0, .  . . ,128) at the surface nodes (equation (15)). AK, the change in pressure 
along the minor arc i - g  < 8 < i+$, is given by 

AP, = W(i, O)/At. (22) 

The pressure distribution around the surface of the cylinder is obtained by a 
summation of these pressure increments. 

4.2. Force coeficients 

The form drag and lift coefficients, corresponding to the force components directed 
respectively along 8 = 7t and 8 = in, can be calculated from an integration of the 
pressure distribution, obtained from equation (22). 

1 
1 

i 
C - - x cos ( j A 0 )  C r(i,O) , 

At j=o 2-1 - Ae 
5 

sin (j A@ C r(i, 0) 
,-I 

4.3. Surface vorticity 
The surface vorticity [wo(B)]  cannot be taken from the nodal values of w along 
r = I ; the area-weighting scheme smooths the vorticity distribution across the 
cylinder surface, so that Iw,(iAB)I $. Jw( i ,  0)l. It may, however, be obtained from the 
nodal values w(i ,  1 ) .  Expressing w as a Taylor series in r and, using (21), thd oilowing 
first-order approximation may be made 

wo(iAB) N w(i ,  

Substituting (22) into (24) 

Re T(i, 0) dr 
wo(i As)  N w( i ,  1) + 

2ABAt dr' Ir,_O 

(24) 

5. Numerical parameters 

n,, ro, At. 
Numerical experiments were carried out in order to determine suitable values for 

The impulsive start results in the creation of a large circulation at  each of the 
surface nodes at the first timestep. n,, the number of vortices created at each of the 
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FIGURE 1. Time development of the surface vorticity distribution about a circular cylinder 
(r, = 25). (a)  n, = 1 ; (b)  n, = 3. -, unsmoothed ; ----, smoothed. 
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FIGURE 2. Time development of the surface vorticity distribution about a circular cylinder 

(n, = 2). (a) ro = 5, ( b )  ro = 100. --, unsmoothed; ----, smoothed. 



Impulsively started flow around a circular cylinder by the vortex method 53 

2.0 
1.8 

1.6 
I .4 

1.2 
1 .o 
0.8 

CD 0.6 
0.4 

0.2 
0 

-0.4 

- 0.6 

-0.8 
- 1.0 

-0.2 3.5 4.0 4.5 
f 

FIGURE 3. Time history of the drag coefficient C,. __ , from (23a); - - - - - ,  from (28a) .  

nodes, should therefore be larger on the first timestep than on subsequent steps. 
n, = 20 was found to  be suitable. 

Figure 1 shows distributions of w,,, obtained directly from (25) ,  at R e  = lo3 a t  
successive times up to t = 0.8. The distributions show a large random component, 
which can be reduced either by averaging over a number of simulations or, as has 
been shown here, increasing n, from 1 to 3 a t  every timestep (other than the first). 
A similar random component is present in the surface pressure distributions and 
force coefficients, and tends to decrease with increasing Reynolds number, as the 
random walk becomes smaller. The figure also shows the distributions smoothed 
using a least-squares fit of a fifth-degree polynomial. Increasing n, has a little effect 
on these smoothed distributions, although the random component is greatly 
diminished. n, = 2 was used for all the short-time computations presented in $6. For 
the longer computations presented in $7,  however, larger values of n, were found to 
be necessary. 

Figure 2 again shows distributions of o,, at R e  = lo3 at successive times up  to 
t = 0.8, both smoothed and unsmoothed. Results using values of ro of 5 and 100 are 
compared and show only very slight differences, even in the random component of 
the distributions. ro = 25 was used in all the following computations. 

Quartepelle & Napolitano (1983) obtained a general formula for the force acting on 
rigid bodies in incompressible flow, which require a knowledge of the entire vorticity 
field. For a steady flow past a cylindrical body in the high-Reynolds-number limit 
(valid for Re 2 lo3), the formula simplifies to the following integral expression for the 
drag force f,: 

J v  

where V is volume and, in the special case of a circular cylinder of unit radius, r ] ,  is 
given by 

7% = x/r2  

If the vorticity field is discretized using (lo), equation (26) gives an expression for the 
drag coefficient 

ui sin (269 - vi cos (24)  

i-1 r: 
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FIGURE 4 ( a ) .  For caption see page 57. 

An analogous expression for the lift coefficient may also be obtained 

l 7  w, sin ( 2e6) + ui cos (20,) C , = - Z r ; [  L 

1-1 r; 

where the ith vortex is at position r, = (ri,Oi) and has velocity components ui and 
vt parallel to C, and C, respectively. A comparison of the force coefficients calculated 
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e 
(b) 0 30 60 90 120 150 180 

t = 0.2 

r = 0.6 

FIGURE 4 ( b ) .  For caption see page 57. 

from (23) and (28) provides an internal check on the accuracy of the method; it tests 
whether the creation of new vortices around the surface of the cylinder, which 
satisfies the boundary condition on the tangential component of velocity, is 
consistent with the convection of the vorticity field. 

Figure 3 shows a comparison of the time histories of C, calculated from (23a) and 
(%a) a t  Re = i03. Agreement is good, although C, calculated from (23a) contains a 
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FIGURE 4( r ) .  For caption see facing page. 

random component which is absent in CD calculated from (28a). The quality of the 
agreement shows little dependence on Reynolds number (above about lo3) and 
improves as the timestep is reduced. A timestep At = 0.02 is shown here, and was 
used in all the following computations. 

6. Comparison with power-series solutions 
Approximate methods have been developed, which give solutions of (4) and (5 ) ,  

valid over small times following the start of the motion (t = 0). The results of two 
such methods are compared with numerical solutions using the vortex method. 
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FIGURE 4. Time development of the pressure distribution about a circular cylinder. -, vortex 
method; -----, Bar-Lev & Yang (1975); ----, Collins & Dennis ( 1 9 7 3 ~ ) .  (a) Re = 2.5 x lo2; 
(b )  Re = lo3; ( c )  Re = lo4; ( d )  Re = lo5. 

Bar-Lev & Yang (1975) used the method of matched asymptotic expansions. Series 
solutions to third order in powers of time from t = 0 are obtained for the inner 
(rotational) and outer (potential) flow fields. A composite solution is then formed 
which is said to be valid for t < 1 at Re 2 200 and for t z 1 at higher Reynolds 
numbers. 

Collins & Dennis (1973a) presented a method in which a solution is obtained for 
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FIGURE 5. Time history of the drag coefficient C, of a circular cylinder. -, vortex method; 
- _ - - _  , Bar-Lev & Yang (1975); ----, Collins & Dennis ( 1 9 7 3 ~ ) .  (a)  Re = 2 . 5 ~  lo2; ( b )  Re = lo3; 
( c )  Re = lo4; (d )  Re = lo5. 

the inner flow field only. This is adjusted so that the flow is uniform at a sufficiently 
large distance from the cylinder. The solution is a power series in t and a second 
variable k = 2(2t/Re)i. Collins & Dennis calculated the solution numerically to 
seventh order in t and third order in k. The results are valid for small t at Re > 200. 
The appropriate range of t is not given precisely, but is known to be 51 and to 
increase with Reynolds number. 

Flow simulations have been carried out up to t = 1.2 across a range of Reynolds 
numbers. The Reynolds numbers considered are 2.5 x lo2, lo3, lo4 and lo5. The 
quantities to be compared with power-series solutions are the surface distributions of 
P and w,, calculated a t  time intervals of 0.2 throughout the simulations, and the time 
histories of the separation position (8,) and drag coefficient (CD). The distributions of 
P and o, are respectively symmetrical and antisymmetrical about the line 0 = 0 and 
are therefore only presented in the range 0' < 0 < 180". In the text, the results of the 
vortex method are denoted by (I), those of Bar-Lev & Yang by (11) and thgse of 
Collins & Dennis by (111). 

Distributions of P are presented in figure 4 at successive times for each Reynolds 
number. At Re = 2 . 5 ~  lo2 and lo3, agreement between (I), (11) and (111) is 
reasonable for t 5 0.6 and t 5 0.8 respectively, bearing in mind that the vortex 
method has a random component. At later times, (I) and (11) remain in fair 
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agreement, while (111) clearly becomes invalid. At R e  = lo4 and lo5, P remains close 
to  the potential flow distribution throughout the period t < 1.2, although a slight 
increase in P a t  90" and a decrease a t  180" is shown by all three curves. The increase 
with Reynolds number of the range o f t  for which (111) is applicable was predicted 
by Collins & Dennis. 

Figure 5 shows the time history of C, for each Reynolds number. The impulsive 
start gives rise to  an initially infinite C,, which then decreases rapidly with time. 
(I) shows C, to then increase, having reached a minimum value. This minimum 
becomes smaller and occurs a t  earlier times as the Reynolds number increases. 
At Re = 2.5 x lo2 and lo3, agreement between (I), (11) and (111) is again reasonable for 
t 5 0.6, while C, is decreasing. The subsequent increase in C, is predicted by neither 
(11) nor (111), which continue to decrease, although at different rates. At Re = lo4 
and lo5, fair agreement is obtained between (I) and (111) across the complete range 
of t. At Re = lo4, (11) gives higher values of C, a t  t < 0.9 and lower values at later 
times. At Re = lo5, (11) gives consistently higher values of C,. 

Figure 6 shows distributions of wo, smoothed using the method described in $5. At 
each Reynolds number, the streamwise gradient of wo a t  the rearmost point of the 
cylinder is initially negative, but becomes increasingly positive as the recirculation 
region develops. At R e  = 2.5 x lo2 and lo3, close agreement between (I) and (111) is 
found for t 5 0.6 and t 5 0.8 respectively, corresponding with the distributions of P 
((XI) is unavailable). At R e  = lo4 and lo5, (I) and (111) show fair agreement across the 
complete range of t ,  although, for t 2 0.8, there is a tendency for (111) to give 
minimum values of wo which are more negative than those of (I). These minima, and 
the zeros of oo on their upstream side, occur nearer to the foremost point of the 
cylinder in (111) than in (I). 

The smoothing of the distributions of wo is important for the location of the 
separation point, 0,, taken to be the point, at which wo = 0. The zeros of each of the 
fifth-degree polynomials are plotted against t in order to produce figure 7, graphs of 
the migration of the, separation point for each Reynolds number. Separation first 
occurs at t z 0.4 and rapidly progresses upstream. The time taken for separation to 
first occur becomes smaller as the Reynolds number increases. At Re = 2.5 x lo2, 
(111) gives values of 0, which are consistently closer to the rearmost point of the 
cylinder than those of (I), although there is good agreement over the time a t  which 
separation first occurs. At Re = lo3 close agreement between (I) and (111) is found 
across the complete range oft. At Re = lo4 and lo5, when t 2 0.8, there is a tendency 
for (111) to give values of 8, which are nearer to the foremost point of the cylinder 
than those of (I). This feature has already been noted in the distributions of wo 
(figure 6). 

7. Comparison with finite-difference solutions and flow visualizations 
Eulerian finite-difference schemes have also been applied to  the starting flow 

around a circular cylinder. The results of two accurate schemes without upwind 
differencing, presented by Collins & Dennis (19736) and Ta Phuoc Loc & Bouard 
(1985), are compared with the results of the Lagrangian vortex method. Following 
Ta Phuoc LOC & Bouard, a comparison is also made between the numerical results 
and the flow-visualization experiments of Bouard & Coutanceau (1980). 

Collins & Dennis presented integrations of the Navier-Stokes equations over a 
range of Reynolds numbers from 5 to a. They give results up to  the time at which 

3 FLM I94 
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t = 0.6 

t = 1.0 t =  1.2 
FIGURE 6 ( a ) .  For caption see page 63. 

their implicit method of integration failed to  converge. This time is generally greater 
than the period for which the series solutions (Collins & Dennis 1973a) are valid, but 
decreases as the Reynolds number is increased. 

Figure 8 shows a comparison of the development of the streamline patterns up to  
t = 4.8 at Re = 500, a t  which st,age the integration of Collins & Dennis broke down. 
The flows are again symmetrical about the line 8 = 0" and, for simplicity, only one 



Impulsively started $ow around a circular cylinder by the vortex method 61 

(b) 100 

50 

WO 

0 
0 

- 50 
t = 0.2 t = 0.4 

t = 0.6 t = 0.8 

' i  = 1.0 t = 1.2 

FIGUXE 6 ( b ) .  For caption see page 63. 

half of each flow will be reproduced. There is, in general, good agreement between the 
two numerical methods. Both show the elongation with time of the primary eddy and 
the appearance of a secondary eddy on the surface of the cylinder at a time between 
= 2.0 and t = 3.2. The figure also shows the streamline 4 = 0, taken from the results 

)f Collins & Dennis, superimposed on the streamlines from the vortex method. The 
)ositions of the secondary eddies are in close agreement and there is reasonable 

3-2 
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t = 0.6 t = 0.8 

t = 1.0 f = 1.2 

FIGURE t;(c). For caption see facing page. 

agreement in the shape of the primary eddies. At t = 3.2 and t = 4.0, however, the 
primary eddy of Collins & Dennis is slightly larger than that of the vortex method 
The results of the vortex method were found to be insensitive to refinement of thc 
mesh, to increase in n, and to  reduction in At. 

Bouard & Coutanceau (1980) presented a series of flow visualization experiment 
for t Q 5 and Re < lo4. Ideal starting flows are closely approximated in thee 
experiments; the distant flow reaches its final velocity at t < 0.04 ( = 2 At). 
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FIGURE 6. Time development of the surface vorticity distribution about a circular cylinder. -, 
vortex method; ----, Collins & Dennis (1973a). (a)  Re = 2.5 x lo2; (b )  Re = lo3; ( c )  Re = lo4; 
(d) Re = lo5. 

Figures 9 and 10 compare real fluid flows, visualized using tracer particles, with the 
results of the vortex method, again presented in the form of streamline patterns. 
They show the flow at t = 5, Re = 300 and Re = 550. The ‘bulge phenomenon’ 
described by Bouard & Coutanceau, a distortion in the streamlines at about 
9 = 1 3 5 O ,  appears in both the experimental and numerical flow patterns although, 
L t  Re = 300, it is not well resolved by the numerical method. 
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FIGURE 7 .  Time history of the separation point. 0 .  vortex method; --, Collins & Dennis 
(1973~) .  ( a )  Re = 2.5 x lo2; (6) Re = lo3; ( e )  Re = lo4; (d) Re = lo5. 
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t = 3.2 

r = 4.8 

FIGURE 8. Comparison of the development of the streamline patterns from two numerical methods. 
(a) Collins & Dennis (1973b); (6) Vortex method. ----, the streamline @ = 0 from the results of 
Collins & Dennis. 

Ta Phuoc LOC & Bouard (1985) presented integrations of the NavierStokes 
equations at Reynolds numbers of 3000 and 9500 and compared their results with the 
flow visualizations of Bouard & Coutanceau. Figures 11-14 show a comparison of 
these results with those of the vortex method. 

Figure 11 gives profiles of the radial velocity on the symmetry axis behind the 
cylinder up to t = 5 a t  Re = 3000. For cIarity, only the experimental results and the 
results of the vortex method are shown in this figure (the numerical results of Ta 
Phuoc Loc & Bouard were in good agreement with the experimental data). The 
results of the vortex method were again found to be insensitive to refinement of the 
mesh and to reduction in At, but are sensitive to an increase in n,. Generally, as t 
increases, a larger value of n,  is required for convergence. n, = 5 was the largest 
practical value for these simulations, and the results may be considered reliable up 
to a time between t = 3 and t = 4 .  

Figure 12 shows successive flow patterns up to t = 5 at  Re = 3000, using n, = 5 in 
the vortex method. There is good qualitative agreement between the results of the 
two numerical methods and the experimental visualizations. The distortion in the 
streamlines, noted in figures 9 and 10, develops into an isolated secondary eddy, and 
is sufficiently large to separate a further secondary eddy from the main recirculating 
region : 'phenomenon a' of Bouard & Coutanceau. 

Figure 13 gives profiles of the radial velocity on the symmetry axis behind the 
:ylinder up to t = 4 at Re = 9500. Again, the vortex method gave results which were 
\ensitive to an increase in n,, with larger values of n,  required for convergence as t 
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FIGURE 9. Comparison of the experimental flow visualizations of Bouard & Coutanceau (1980) 
with streamlines from the vortex method at t = 5 ,  Re = 300. 

increases. With n, = 6, the results may be considered reliable up to a time between 
t = 2 and t = 2.8. 

Figure 14 shows successive flow patterns up to t = 4 at Re = 9500, using n, = 6 in 
the vortex method. At t = 1.6, the recirculating wake is confined to a thin layer 
adjacent to  the cylinder surface, with a rapidly rotating core resolved by both 
numerical methods. At t = 2.8, the core develops into the primary eddy. There are 
also two secondary eddies on the surface of the cylinder, again resolved by both 
numerical methods. At later times, the numerical methods give diverging results, as 
expected from figure 13. However, i t  is noted that, in the experiment, the paths of 
the tracer particles intersect each other in the wake, indicating a rapid change in 
the flow pattern; Bouard & Coutanceau state that the flow becomes unstable 
immedia.tely after t = 4.0. 

8. Discussion and conclusions 
The starting flow around a circular cylinder has been computed using a Lagrangian 

vortex method, in which particular attention has been paid to the surface conditions. 
The time variation of surface pressure and surface vorticity distributions, separation 
positions, forces, streamline patterns and velocities in the near wake have beer 
compared, where possible, with two analytical time-series solutions, two Euleriar 
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FIGURE 10. Comparison of the experimental flow visualizations of Bouard & Coutanceau (1980) 
with streamlines from the vort'ex method a t  t = 5, Re = 550. 

i0 

FIGURE 11. The radial velocity on the symmetry axis behind the  cylinder at  Re = 3000. 
Experimental data (Ta Phuoc Loc & Bouard 1985): A, t = 1 ;  D, t = 2; 0, t = 3 ;  0 ,  t = 4; 0, 
= 5 .  Vortex method: . . . . , n, = 3 ;  ---- n = 4. --- n = 5. 

i "  , , v  
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FIGURE 12(a). For caption see page 71. 
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(111) 

FIGURE 12(b) .  For caption see page 71. 
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(iii) 

t 

FIGURE 12(e).  For caption see facing page. 
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F I G U ~ E  12. Comparison at Re = 3000 of the streamlines from the vortex method (i) with 
experimental visualizations (ii) and with streamlines from a finite-difference method (iii) (Ta Phuoc 
LOC & Bouard 1985). (a )  t = 2 ;  ( b )  t = 3 ;  ( e )  t = 4; (d )  t = 5.  
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FIGURE 13. The radial velocity on the symmetry axis behind the cylinder at Re = 9500. 
Experimental data (Ta Phuoc LOC & Bouard 1985): A, t = 1.2; V, t = 2.0; 0, t = 2.8;  0,  t = 3.6; 
0,  t = 4.0. Vortex method: - - - - - ,  n, = 5;  ----, n, = 6. 

fini te-difference schemes and some careful experiments, giving a comprehensive 
description of the flow. 

There is close agreement between the results of the vortex method and those of the 
finite-difference methods of Collins & Dennis (19733) and Ta Phuoc LOC & Bouard 
(1985). The large primary eddies and the secondary eddies are both well predicted. 

Variation of the numerical parameters in the vortex method and comparison with 
the velocities in the near wake presented by Ta Phuoc LOC & Bouard, which are in 
close agreement with experiment, show that the number of vortices in the flow is a 
vital parameter for convergence. Accurate velocity predictions require more vortices 
per timestep for longer than for shorter runs and for higher than for lower Reynolds 
numbers. If too few are introduced, the primary eddies in the wake tend to roll up 
too tightly. Since convection dominates vorticity diffusion away from the surface a t  
high Reynolds numbers, the large number of vortices appears to be necessary for an 
accurate vortex-in-cell calculation. Convergence with a smaller number of vortices 
might be possible using a vortex-blob method with high-order core structures 
(Anderson & Greengard 1985). Incorporation of this through local corrections in the 
vortex-in-cell method could be considered (Anderson 1986). 

The migration of the separation points is a prominent characteristic of the flow 
development, but this could only be compared with the time-series solution of Collins 
& Dennis (1973a). Agreement was good for Reynolds numbers of 2.5 x lo2 and lo3 
but was less satisfactory a t  lo4 and lo5. This is possibly related to the formation of 
small-scale eddy structures ahead of separation at very high Reynolds numbers. 

The starting flow around a circular cylinder is a valuable benchmark test for a 
two-dimensional, viscous-flow computation method. The flow has highly transient 
characteristics which are now well defined. It would be useful, however, to check the 
velocity measurements using modern equipment, since Bouard & Coutanceau 
obtained these by simply measuring the displacements of tracer particles on a 
photographic plate. 

The vortex method in the form used here is thus capable of accurately predicting 
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FIGURE 14(a). For caption see page 76. 
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FIGT-RE 14(b) .  For caption see page 76. 
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FIGURE 14(c). For caption see page 76. 
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(iii) 

FIGURE 14. Comparison at Re = 9500 of the streamlines from the vortex method (i) with 
experimental visualizations (ii) and with streamlines from a finite-difference method (iii) (Ta Phuoc 
LOC & Bouard 1985). (a) t = 1.6; ( b )  t = 2 . 8 ;  (c )  t = 3.2; (d )  t = 4.0. 
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these flows provided sufficient vortices are introduced. Long-time simulations (not 
presented here) indicate that the method always remains stable. It is generally 
considered that Eulerian simulations eventually become unstable without upwind 
differencing, introducing a source of error (Telionis 1981). This was not present in the 
accurate Eulerian methods mentioned above, which simulate flows of relatively short 
duration. 

This work forms part of the research programme of the Marine Technology 
Directorate's Fluid Loading Programme, a programme of research jointly funded by 
SERC, the Department of Energy and the offshore industry. The authors would like 
to thank Professor H. T. Yang, for providing typographical corrections to the 
matched asymptotic expansion formulae in Bar-Lev & Yang (1975). 
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